
SAD-A283 615
US Army Corps
of Englneers
iE USACUE. Teefad depstd FF-OM4

Knowledge Worker Plafform Analysis
by
Edward J. Japol
Melody M. Moore
Wayne Schmidt
Spencer Rugabor
Hernan Astudillo
and Scott Maxwell

Many Army personnel can be classified as knowledge
wor.rs--people who produce not tangible products,
but some form of processed or enhanced information.
Most Army knowledge workers depend on computer
procesing to complete their tasks efficently. However,
those tasks are often complicated by the many comput-
or platforms and software packages used to contain and
convey needed information.

The U.S. Army Construction Engineering Roeearch
Laboratories (USACERL) has been conducting ongoing
research into the problems of information access and
management for knowledge workers, with the ultimate
goal of developing a comprehensive performance
support environment for knowledge workers. The
Knowledge Worker System (KWS) is a prototype
scheduling program designed to help knowledge
workers organize and coordinate their work by storing
task scheduing information in a centralized data base.
KWS tracks scheduled events, provides a list of
completed events, and outines the steps necessary to /
complete forthcoming tasks. Ths study examined the
fesibllity of converting KWS to an "open systems" , 6
technology to make the program compatible with a9
number of different platforms. Current marketabilty I Ill illl
language tools, graphical user interface (GUI) tools, and
operating systems were investigated for compliance
with government and open systems standards. Strate-
gic plans were devised for KWS conversion.

VMi QU&Lr

Approved for public releume; dis uiaimln Isla 82 3

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

REVALUATION OF REPORT

REFERENCE: USACERL Technical Report FF-94125, Knowledge Worker Platform Analysis

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As
user of this report, your customer comments will provide USACERL with information essential for improving
future reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which
report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure, management
procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract doilars
saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

4. What is your evaluation of this report in the following areas?

a. Presentation:

b. Completeness:

c. Easy to Understand:

d. Easy to Implement:

e. Adequate Reference Material:

f. Relates to Area of Interest:

g. Did the report meet your expectations?

h.' Does the report raise unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report mad future reports
of this type more responsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions or

discuss the topic, please fill in the following information.

Nan

Telephone Number:

Organization Address:

6. Please mail the completed form to:

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-IMT
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE wN nI

uahc , potn Owi ftu Wsc i on ot Wai in i a eis sw tn d o w em ap 1 h =t per ' nwion , including fs t l ne U M k r Ve V ng in. sew iftng es oM g de s m surc m.,
"gMath0 amid niewu Utdfm n1eed, and compleing md reeseung he caectimn of Wfimwn. Send commew regemg the burden esawe or w"y athe pe at "

amam u dm , inb c wuqgem for meducng tis burde, to Wahmian HedqumteS Svice Dreotam for m1amdn Opeetim mid Reoft 1215 J•emsonm
Ow* How"my. Suis 1204, AMlngon, VA 22202-4302. mid to ft Offim of negemnt eind &9ud". Ppewo RedcOM P. (0704-0188), Wn ,ngton. OC 2053.
1. AGENCY USE ONLY (L"aw o Mw* 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1994 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMERS

Knowledge Worker Platform Analysis MIPR
DLAH-92-ZRM-206

S. AUJ•ORS)
Edward J. Japel, Melody M. Moore, Wayne Schmidt, Spencer Rugaber,
Hernan Astudillo, and Scott Maxwell

7. PERFOAMNG ORGANZATION NAME(S) AND ADO•RESS(ES) S. PEROFVANG ORGANIZATION

U.S. Army Construction Engineering Research Laboratories (USACERL) REPORT NUMER

P.O. Box 9005 FF-94/25
Champaign, IL 61826-9005

9. SPONSORING / MONITORM AGENCY NAIIE(S) AM ADORESS(ES) tO SPONSORING / MnORIM
Defense Logistics Agency AGENCY REPORT NUSLER

AT1TN: DLA-ZI
Room 3B527 Cameron Station
Alexandria, VA 22304-6100

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUIsON / AVAILABLUTY STATEMENT 12t. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Many Army personnel can be classified as knowledge wor*ers-people who produce not tangible products, but some form
of processed or enhanced information. Most Army knowledge workers depend on computer processing to complete their
tasks efficiently. However, those tasks are often complicated by the many computer platforms and software packages used
to contain and convey needed information.

The U.S. Army Construction Engineering Research Laboratories (USACERL) has been conducting ongoing research into
the problems of information access and management for knowledge workers, with the ultimate goal of developing a
comprehensive performance support environment for knowledge workers. The Knowledge Worker System (KWS) is a
prototype scheduling program designed to help knowledge workers organize and coordinate their work by storing task
scheduling information in a centralized data base. KWS tracks scheduled events, provides a list of completed events, and
outlines the steps necessary to complete forthcoming tasks. This study examined the feasibility of converting KWS to an
"open systems" technology to make the program compatible with a number of different platforms. Current marketability of
language tools, graphical user interface (GUI) tools, and operating systems were investigated for compliance with
government and open systems standards. Strategic plans were devised for KWS conversion.

14. SUWJECT TFRMS 15. NUMER OF PAGES
Knowledge Worker System (KWS) task scheduling information 44
open systems technology 1e. PRICE CODE
Ada (computer program language)

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UITATION OF ABSTRACT
OF REPORT OF TH1S PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 754001 -280-8800 SodId Form 298 (Pov. 2-WS)

Prelo by ANSI OW 23-ta
26-102

2 USACKKL TR Fr4es

Foreword

This study was conducted for Defense Logistics Agency under Military Interde-
partmental Purchase Request (MIPR) No. DLAH-92-ZRM-206. The technical
monitor was Harriet Riofrio, DLA-ZI.

The work was performed by Facility Ment Division (FF), Infatructure
Laboratory (FL), U.S. Army Construction Engineering Research Laboratories
(USACERL). The USACERL principal investigator was Edward J. Japel. Dr.
Spencer Rugaber, Hernan Astudillo, and Terry Kane are associated with the Georgia
Institute of Technology College of Computing, Open Systems Laboratory. Alan
Moore is Chief, CECER-FF and Dave Joncich is Acting Chief, CECER-FL. The
USACERL technical editor was William J. Wolfe, Information Management Office.

LTC David J. Rebbein is Commander and Acting Director, USACERL. Dr. Michael
J. O'Connor is Technical Director.

Aooesslon 0Po
NTIS GRA&I 13'
DTIC TAB Q
Unanrm!.-.vced

By

Distributlon/

Availability Cclss
IAvail aaj•or

Dist I Special

UWIACURL TR WF4K4 3

Contents
SF U S 1

ForWord °2

List of Tables and Figures .. 5

1 oitroduction............... 7
Background

Objectives
Approach
Scope

2 System Overview and Conversion ... 9
The Knowledge Worker System

Open Systems Organizations, Standards, and Conventions
Re-Engineering Methods and Techniques

3 Vendor Survey ... 18
Operating Systems
Ada Compilers
Graphical User Interface Tools
Database Access

4 Trlansllon Study Reul .. 24
Statistical Analysis
Hardware Platform Issues

Operating System Issues
Language Issues
User Interface Issues

5 Pr OfCo p ... 30
Overview
Transformations and Assumptions

6 Transi on Plan ... 32
Platform Choice

Strategic Alternatives
Strategy Recommendation

4 USA•.RL TR FF4M5

7 con uso and emm lo 36

Re ro n 37

Appendlx: Prototype Screens ... 38

DOSTREUTION

USACERL TR FF-414 5

List of Tables and Figures
Tw*

1 Definition of terms related to standards compliance 11

2 IEEE POSIX standards and specifications 12

3 Definition of terms related to re-engineering methods 13

4 Statistical analysis of KWS source code 25

5 Distribution analysis of KWS source code 25

6 Windows-to-Dev/Guide mapping 31

F Poesg.

I Projected completion schedules for Phases of KWS migration 35

2 Projected completion schedule for Phase 11 of KWS migration............ 35

Al Main screen ... 38

A2 Event manager screen .. 38

A3 ToDo list screen .. 39

A4 Administrator's screen .. 39

A5 Main help screen .. 40

USACRI TPh wF4 7

1 Introduction

Background

Many Army personnel can be classified as knowledge workers-people who produce
not tangible products, but some form of processed or enhanced information. While
most Army knowledge workers depend on computer processing to complete their
tasks efficiently, their tasks are often complicated by the many computer platforms
and software packages used to contain and convey needed information

The U.S. Army Construction Engineering Research Laboratories (USACERL) has
been conducting ongoing research into resolving problems of information access and
management for knowledge workers, with the ultimate goal of developing a
comprehensive performance support environment for this group. The Knowledge
Worker System (KWS) is a prototype scheduling program designed to help
knowledge workers orghnize and coordinate their work by storing task scheduling
information in a centralized data base. KWS tracks scheduled events, lists
completed events, and outlines the steps necessary to complete forthcoming tasks.

It may be possible to broaden KWS's applicability by converting it to an "open
systems' technology, an approach that would make the program compatible with a
number of different platforms. Open systems technology has become increasingly

important in computing environments in recent years. Following open systems
standards can reduce the overwhelming cost of software development, improve
system reliability, and reduce maintenance costs (Quarterman and Wilhelm 1993).
Software applications can be tested for adherence to standards; therefore, metrics
can be developed to determine the portability and interoperability of applications.
This study analyzed the feasibility of re-engineering KWS for open systems and
outlined strategies to implement the conversion.

Objectives

The oWectives of this study were: (1) to determine the feasibility of converting KWS
to open systems technology, including POSIX and Motif, (2) to explore the feasibility

8 USACERL TR FF4/25

of reimplementing KWS in the DOD-standard computer language, Ada, and (3) to
investigate the current market availability of language tools, POSIX-compliant
operating systems, and Graphical User Interface (GUI) builder tools.

Approach

A statistical analysis of the KWS source code showed that developing the user
interface would be the largest effort in re-engineering the program. On this basis,
the study concentrated on locating Ada and C/C+4 -based user interface tools and
support systems for Motif. A market survey was done to locate other open systems
tools and operating systems. Information from the source code analysis and market
survey was used to perform a transition study that concentrated on issues involving
hardware platforms, operating systems, programming languages, user interfaces,
and organizational decomposition (object-oriented vs. functional programming
characteristics).

Scope

This study analyzed Knowledge Worker, Version, 1.6. Results of this study may not
apply to later versions of the program.

tSAU RL T1 PP4Mr4S 0

2 System Overview and Conversion

The Knowledge Worker System

The Knowledge Worker System (KWS) is a software package designed to simplify the
job of knowledge workers (Construction Research Center 1993). KWS allows
knowledge workers to organize and coordinate their work by storing task-scheduling
information a centralized database. KWS tracks the scheduled events and any
modifications to the schedule, and also serves as a repository of information about
each task. KWS helps keep knowledge workers on schedule by providing a list of
tasks to be completed and outlining the steps necessary to complete each task. It
notifies the user of schedule or task changes and retains completion data for
supervisors.

Open Systems Organizations, Standards, and Conventions

Identifying the major standards organizations and their activities is key to
understanding the open systems world. This is a rapidly developing market, and
therefore it is crucial to continually monitor the journals and newsletters from the
various organizations. The following describes important standards organizations,
relevant standards, and some definitions of conformance.

Open Systems Organiztons

This section describes the various open systems organizations, their current status
and purposes, and the relationships between them.

Uniforum. Uniforum is a nonprofit international association of open systems
professionals that publishes the Uniforum Monthly, a journal of open systems and
UNIX articles, and Uninewa, a biweekly newsletter. Uniforum also publishes the
annual Uniforum Products directory to promote trade and communications within
the community. It also publishes a series of technical guides and overviews for open
systems topics.

X/Open. Established in 1984, X/Open is an independent international consortium
of computer system vendors who share the goal of developing a common applications

10 USACERL TR FF-4/25

environment for multiple vendors based on international and de facto standards.
Most of the largest industry vendors and customers are members of this consortium.
A/Open is developing the Common Applications Environment (CAE), which contains
practical interface specifications for interoperability and software portability.
X/Open is more concerned with practicality than with formality, and has adopted and
adapted existing standards as a basis for the CAE. The CAE is being developed
through three programs:

1. The Xtra Market Requirements Process: This process identifies the real market
needs for applications in open systems environments. The results of this analysis
give X/Open a consensus view of the market requirements. The Xtra process also
creates and guides technical work groups for specific issues.

2. The XPG Specifications: The X/Open Portability Guide (XPG) is a set of
specifications that define an open systems environment interface. The XPG
includes an integrated set of components needed by a portable application.

3. The X1 Open Conformance Testing and Branding Program: X/Open publishes
the X/Open Portability Guide, which contains an extensive set of conformance
criteria based on verification tests. The VSX3 test suite exists to verify that
the system software running on a hardware environment conforms to the
X/Open specifications. The test suite produces a report that rates the product's
X/Open conformance. Products deemed compliant receive the X/Open "brand,"
which symbolizes its acceptance.

IEEE 1003 Committee. The 1003 series of committees were chartered by the IEEE
society to develop the standards documents for the Portable Operating System
Interface for Computer Environments (POSIX). These all-volunteer committees
represent a cross-section of expertise from industry and academia. IEEE standards
are subject to reaffirmation every 5 years, which means that the POSIX. 1 standard
will be due for review in 1993.

ISO. The International Standards Organization has been involved as a review body
in the development of the POSIX.1 standard (approved as a Draft Proposed
International Standard). Some minor changes were suggested so the POSD.1
standard could be submitted as a full international standard.

NIST. The National Institute of Standards and Technology originally developed its
own operating systems standards, but has since merged with the IEEE 1003
committee to develop POSIXFIPS. This standard mandates some features
considered optional or unspecified in POSIX.1, but otherwise matches the POSIX

USACERL TR F-4/25 11

standard. NIST also produces the Application Portability Profile, which outlines a
set of standards for application development.

ANSI. The American National Standards Institute has not been involved in the
development of the operating systems standards, but it has been involved with the
development of C language standards (ANSI C) that include standard libraries and
operating system interfaces. ANSI is working with the POSIX.1 committee to
address these OS-specific functions.

POSIX Conformance

The major goal of standardization is to provide a platform for portability and
interoperability. This is accomplished through a variety of mechanisms with varying
degrees of formality. Conformance to the standards also ranges from formal
certification to partial compliance. The following discussion outlines how the
standards differ and how conformance is measured.

Deffinon. To assess compliance, the specification's formality must be determined
precisely. Table 1 lists the terms defined for their use in this study.

IEEE 1003 The POSiX operating system specification is a formal standard, IEEE
P1003 and ISO/IEC IS 9945. The formal standard is part of a larger body of work
that includes many projects and draft standards, some of which are in balloting.
Table 2 shows the relevant IEEE specifications and standards.

Table 1. Detfilnon of temw related to sUtands x iance.

Term Definition

Standard A formal specification reviewed and approved by a formal standards
body such as ANSI or NIST.

Specification Not necessarily a standard, but may be in the review process to become
a standard.

de facto standard A specification that is not a formal standard approved by a standards
organization, but so widely used that it is recognized as a standard.

Profile Defines an application interface or environment with a set of specifica-
ti and standards. Profiles may be standards produced by an open
systems organization, or may be specific to a vendor.

ISP An intationally standardized profile.

12 LWAcIE TN W44M/

1003.1 POS1X Systom ApiNcefion Pmqmmr~nqr ~werae (API)

1003.1a Extenelone to 1003.1

10032 POSIX Shel and ULWNee

10032a User Portabity Extensios (UPE)

1003.3 POSIX Test Methods Stsndard

1003.4 Reel time exfemnsons (incJdng threeds)

1003.5 Ada bindin" lo 1003.1

The Test Methods Standards committee (1003.3) has two subcommittees: 1003.3.1,
which is developing test methods for 1003.1 (System API), and 1003.3.2, which is
developing similar methods for 1003.2 (Shell and Utilities). Other POSIX
committees are charged with developing their own test methods.

Testing for compliance is performed by laboratories that have been accredited by
authorized accreditation bodies (such as NIST). Then an independent validation
body validates the results of the tests. Finally, the accredited laboratory provides
certification for the tested products Conformance to the above-listed standards and
specifications can take two different forms: application and implementation of the
system interface.

AppIkmf on Co#omwnw Conformance to the POSIX.1 standards for applications
determine the level of portability of that implementation. There are three levels of
conformance for applications:

1. Strictly conforming. The application exclusively uses features from the
POS1.1 standard or applicable language standard.

2. Conforming POSL.1. Conforms to the POSIX1 standard, but may also use
other standards not related to the System Interface Standard. All standards
used must be documented, along with options and dependencies

3. Conforin with Extensions Conforms to the POS1.I standard, but may use
nonstandard extensions or facilities. Imp tationd behavior is
acceptable but must be specified in the implementation.

Implenwý nlW0 n Con munwe For system interfaces, there is only one form of
conformance: the standard failities of P0 1. must be implemented with the
specified behavior. The concept of a strictly conforming plnentation" does not

myt; su opp at exn , slmquae bhlinip and p mer

USACELq TR IFF1e40 13

as long as the basic facilities of the POSIX. 1 standard are not altered and a strictly
conforming application will perform correctly.

In fact, it is nearly unavoidable that the POSIJLI standard be augmented in an
implementation because the standard does not address such key features as system

administration and some file-system support mechanisms. Therefore, vendors of
POSIX-compliant systems must document the extensions and implementation-
defined features of their interface.

Re-Enginering Methods and Techniques

An overview of current research in reverse engineering and re-engineering systems
follows. Table 3 lists definitions of terms used in this document that relate to re-
engineering methods.

Mgration Strategle

There are many ways to move an information system to a distributed open systems
environment. The following section lists some of the studied approaches organized
roughly in order of increasing required effort.

Every strategy has its costs and benefits. For any given situation, the costs and
benefits of candidate strategies must be compared to select the best approach.
Decision Criteria (p 15) describes questions that can be asked to help clarify the

situation before choosing a strategy. A description of the strategies themselves
follows.

Table 3. Definition of tuIme related to re-mngireering methode.

Term Defnto

Migration (or conversion) A general term that refers to the procedures, methods, and practice of moving
software from one computing environment (including hardware platform,
operating system, and tool support) to a different environment.

Re-engineering The task of redesigning and reimplementing code. Re-engineering may
include changing an application's funcfionalty as well as its implementation.

Porting (or transporting) Moving an application from one environment to another with minimal changes.
Porting usually imples that nothing other than machine-specific code is
changed; the code, appearance, and functionality of the ported software should
be nearly identical to the original.

Reverse engineering The process of examining code from an existing application to understand its
design.

Forward eniineerina The process of reimlementina a system from a re-enaneered design.

14 USACIERL TNR W4i

Dong No -ng The baseline against which the other strategies must be measured
is the strategy of simply doing nothing. In this case, there is no real benefit, and the

cost is fairly well understood. This strategy may be appropriate if an application is

going to be replaced or phased out, or if an application is used only infrequently at

a single site. In such circumstances, there is little value in supporting open systems

or distributed access.

Direct Application Porting. Sometimes a system can be re-engineered simply by

directly porting the application to the new platform without adding any new
functionality. To pursue this strategy, the machine-specific code is rewritten fc

new platform, and then recompiled on the new platform. This is slow but relaý.

straightforward. Once a list of specific conversions has been made, the source-code

conversion can be partially automated.

The direct porting strategy is best when a large portion of the code is platform-

independent. Simple porting is not possible if large portions of the code must be

rewritten (for example, when replacing a user interface with very different display

technology). Porting may also be used as an interim step to some of the strategies

described below.

Con ilwon by PR-ngnewlng Without a clear understanding of the original code's

design, moving a system from one platform to another is an open invitation to
disaster. Reverse engineering software reveals an application's structure; the under-

standing thus gained can then be used as a basis for enhancements.

The benefits of such an approach are obvious, but the costs are hard to measure.

Reverse engineering is slow, hard work. Some mechanisms for partially automating

the process are described below.

Manual rH-gineering is best when the existing code will be used extensively for the
foreseeable future. Maintenance activities that require modification of existing code

(as opposed to adding new modules) can also help justify the expense of reverse

engineering.

It is not always necessary to reverse-engineer an entire system, although the reverse

engineer always needs to understand the relationship of the part under inspection

to the whole system. Thus, when documentation is plentiful and accurate and the

maintenance personnel are experienced, partial reverse engineering may be more

feasible.

USACERL TR FF44/25 1I

Automatic Rveri.e-Enginsering. Automation can help reduce the cost of reverse
engineering. Automatic reverse engineering involves using a program that identifies
features of existing programs and translates them into a standard design representa-
tion. Unfortunately, few tools currently exist for that task, and those that do exist
are primitive, capable of describing only the existing system's surface features. The
problem of analyzing code is compounded by the fact that layers of bug fixes and
rewrites pile up on the original code like patches on old clothes, so that the original
dec:gn is often obscured.

Programs are analyzed by systematically inspecting the source code itself; the fruit
of the analysis is a description of the application domain and of the procedures that
the program models. This analysis can be performed manually, but the process is
labor-intensive and slow. Any help an automated tool offers in this area is a
blessing.

Some CASE tools, such as IDE's Software Through Pictures (STP), support reverse
engineers in a variety of ways. The information in a diagram is stored in a
standardized text file with a well-documented format. Diagrams are normally
constructed in STP by the user, who manually selects icons to flesh out the diagram
on the screen. Using the published file format, however, diagrams can be con-
structed automatically based on the information extracted by other tools. This
representation can help to forward-engineer to a new platform.

Pewrit From SCJrtCIL A final strategy must be mentioned for reasons of complete-
ness. Sometimes it may be best to throw out the existing program entirely, respecify
the requirements, and then rebuild the whole system from scratch. This decision is
most appropriate when an old system needs to be greatly modified and is so complex
that re-engineering would be more expensive than simply starting over.

Decision Criteria

The following section describes the variety of costs and benefits examined in
selecting a strategy, or the "decision criteria.'

Factors Related to Usage of the Existing System.

"* How many users does the system have?

"* How are the users distributed topologically? (Are they logged into the
mainframe, do they submit batch jobs, or are run requests handled manually?)

"* How frequently is the application used?

16 ULACOL 1TN W•F4=4

In what ways is the application used? (What is the ratio of data updates to

reports produced? How frequently is each such use made?)

* What is the physical process by which the application is currently used (data

entry, validation handled separately; manual or electronic distribution of

reports)?

How many different sites use the existing system?

What is the expected lifetime of the existing application? Is usage increasing

or decreasing?

In terms of human and machine resources, how much does it cost to execute the

program? How does this cost vary across the various types of uses?

Are there political factors that would impede the reduction in information
control that results from distributed access?

Are there administrative procedures that would be difficult to provide in a

distributed environment? What are the costs in t these proce-

dures?

Do other applications depend directly on the data produced by this application?

Conversely, does this application depend on the products of other applications?

Factora Plotatd to the Strctura and Functlonaity of the ExAtin SySam.

"* How compatible is the current architecture with the client/server model? Is the

application primarily batch or interactive?

"* What external resources and connections does the application require? How

extensively are these used?

"* Does the existing system make use of nonportable operating system capabili-

ties? Does the existing system interface to other existing systems?

"* Does the existing system write reports? If so, is the computational functional-

ity separable from the report constrtion Are there reports that
could be replaced by Structured Query Language (SQL) queries? Are there

reports that could be replaced by reports constructed by the relational data
base management system (RDBMS) report writer capability?

USAMCRL TR W44/= 17

Does the current application do significant data validation that could be
replaced by the data validation features of the RDBMS? Could the current
application make effective use of advanced RDBMS operations like views and
joins?

Factors Rebatd to Expectd UAge of the Convered Systm.

"* How much more frequently will the system be used when it becomes available
on a network? What is the expected change in the kind of usage (e.g., from
batch to interactive) promoted by distributed access?

"* Can the application take advantage of DBMS capabilities such as security and
integrity?

"* What ip the expected change in execution cost in terms of machine and human
resources?

Fectors Rslatd to Expected Evolution of the ConerW System.

"* Does the existing system make'use of a DBMS? Is it relational? Does the

existing system make use of an older COBOL version? Are there portability
issues related to data conversion? Can this application be integrated into
others?

" How much effort is now put into maintaining the system? What enhancements

to the system are planned? What enhncements would be facilitated by the use
of an SQL interface to the data?

"* Are there personnel available who are familiar with the internals of the
existing system? Is the system documented? How up-to-date and accurate is
the documentation? Is the money available for a comprehensive reverse
engne.ng effort? Does this include funding to support the training of users
in 4GLs? Is incremental conversion feasible?

"* Is the application part of the effort to standardize the use of data item names?
How closely does it conform to these standards?

is UBAmO Ta wF4Ms

3 Vendor Survey

An important factor in the feasibility of Knowledge Worker using
open systems technology is the availability of tools and resources. A description of
the survey and evaluation of open systems and supporting products on the current
market follows.

Opweng Sys%=

For this study, a primary concern with operating system software is the level of
POSIX compliance. UNIX systems for the Sun SPARC architecture and also for the
386 personal computer (PC) architecture were examined.

SunOS 4,1.x System V Environment (Paflbrm: SPARC)

The SunOS version 4.1 installed with the System V installation option is certified
POSIX-compliant. It is actually a superset of the POSDL 1 standard, including all
of the functionality of the standard plus additional SunOS functionality. Working
in the POSIX environment under 4.1 simply entails adding the POSIX libraries to
the user's path.

Sun Solars 10 (Platform: SPARC and 3W/48)

Like SunOS 4.1, the latest release of the Solaris operating system is POSIX-
compliant. Solaris 2.0 is not binary compatible with SunOS 4.1.x, however, so
application tools to check for implementation on Solaris 2.0 must be chosen with
care. It was recently announced that Solaris for PCs will be available mid-July 1993.

Mcrowft Wlxbndomw NT (Alc aft) (PANn: 3S1W and SPARC)

MNrosot's most recently anounced opmrating tem is partially POSIX-compliant.
It ipleme the base functions of POSIX 1003.1 but is not complete. The POSIX
compliance is provided in a subsystem that is not Windows-compliant. Windows
applications ame not POSIX-compliabt Recently, Microsoft announced Windows NT
would be available on the SPARC platform.

USACKM TR FF44nW IS

Saa Cruz OPWrOW= (SCO) UMNX (P&Obm: 3WN14)

SCO UNIX is a certified POSIX-compliant UNIX for the PC platform. It is a 32-bit,
multithreaded, multitasking, multiuser kernel with virtual memory.

Ads Compilers

Since C compilers generally are provided with UNIX implementations, and the
portable GNU C and C++ compilers are freely distributable, this survey concentrated
on Ada compilers.

Verdix &O (VedIlx) (Price varies by plaform)

The Verdix Ada Development System (VADS) is an integrated set of software tools
for Ada program development The package includes a validated Ada compiler, an
interactive debugger, a library management system, and other tools. VADS is
available on a number of platforms, including Sun SPARC, HP, DEC, and IBM PC
(under AIX). The VADS system is partially POSIX-compliant, and is being staged
to be fully compliant The next release is due in August 1993 and will support IEEE
1003.1 Chapters 2,4,5, and 6. The following release is scheduled for December 1993
and will add some low-level features, including Ada I/O and signals.

SPARCWorks Ada (SunPro) (List $10,000)

SPARCWorks Ada is a 'value-added3 version of Verdix 6.0 for the Sun SPARC
platform. As such, it has all of the features and capabilities mentioned above, plus
integration with Sun display tools, such as devqguide (a GUI builder for Open Look
that eventually will be rewritten to handle Motif). SPARCWorks Ada can be
purchased with a maintenance option that will include the POSIX upgrades this
summer and next winter.

Alsys Ada (Alsy) (List $7,500)

Alsys Ada is supported on many platforms, including SPARC, SCO UNIX, and HP.
The vendor claims that it is POSIX-compliant and is capable of producing POSIX-
compliant code. Alsys Ada is a complete development environment including
compiler, library manage, and symbolic debugge. The AdaProbe symbolic debugger
and the AdaXref cross-reference generator are included, along with the AdaMake
makeffle utility. Alsys also provides access to Motif through the "Ada Tune' tool
($2,250) and to the Xlib and Motif libraries ($2,995).

20 USAWEL TR PP4M=2

Ad& bNtIW aMd Cowe Complie Soft=m MTD SYeten) (List $10 O-MM0)

TLD provides a POSIX-compliant Ada development system with cross-compiling
capabilities for real-time embedded systems development.

Graphical User Intartac Tools

Building a Graphical User Interface (GUI) can be made much easier with GUI
builder tools. Some of the toolsets listed here are libraries or widget (generic tool)
sets, and some are actually palette-based tools that allow the user interface to be
built in 'drag-and-drop" fashion. These GUI builder tools then generate the X and
Motif code to produce the user interface in the application. Because Sun announced
that Open Look is being discontinued in favor of Motif, only Motif-based tools were
investigated.

MeW Tooikits-C and C#+

Motif toolkits use the underlying native toolkits and provide widgets, gadgets, and
palette-based GUI builders. These tools produce C and C++ code to generate the
interfaces.

(W mEd wE.-Wm taon%, ~subat (List $5,000.) Reputedly the best GUI
builder on the market for Motif, UI/X includes a native toolkit and an interactive
GUI builder. UIM/X also includes an interpreter that allows developers to test
interfces without going through the time-consuming steps of compiling, linking, and
debugging the code. Researchers at Georgia Institute of Technology received and
installed a demo copy of UIM/X and reported that it was a very powerful program.

Builder Xcesory (Intgratd Compute Solutions, Inc.. BX is a tool for building
Motif GUIs with a C interface. It also includes a "drag-and-drop" capability for style
sheets. The Army Research Laboratory (ARL) at Georgia Institute of Technology has
used BX for Motif development and warns that BXWs own user interface is cumber-
some and produces a nonstandard user interface.

CWnh SoNOm w (ViewCntMe) (List $2,995 + $995 for libraries.) This SPARC-
based GUI development tool supports Open Look and Motif. It is basically a GUI
builder with hooks to C++. It implements its own toolkit (as opposed to using a
"nativeu toolkit) to lend a particular 'look an" "eel to the developed applications.

USACERL TR F-44M2 21

C++ Views (Liant Sofiwa,). (List $1,495 [UNIX]/$494 [Windows].) The Views
package supports Motif and OS&2 Presentation Manager with the native toolkits. It
includes an application programming interface (API) but no GUI builder tool.

Objectbuilder (ParcPlRa Systems). (List $2,995.) Objectbuilder is a C++
programming tool that supports OpenLook and Motif for the SPARC platform only.
It is a GUI builder but does not have its own native toolkit.

MAoi ToolkiO-Ada

These toolkits are similar to the Motif toolkits above, except that they generate Ada
code instead of C or C++.

UIL/Ada and Ada/Moth (SERC). (One copy, $2,995; less for multiple copies.) This
tool translates the output of palette-based GUI builders (such as UIM/X) into Ada,
allowing Ada applications to be built with rapid prototyping. The UIIJAda tool
translates the intermediate representation from the palette builder and produces
Ada code with Motif binding calls. The Ada/Motif libraries support calls from Ada
to Motif. These tools work with the Sun Ada compiler (which is not POSIX-
compliant), but not with the SPARCWorks Ada compilers specifically. It also works
with SCO/Alsys Ada and HP/Alsys Ada.

GRA4W (EVB Soffmwre). (One copy, $5,000; 2-5 copies, $4,500 each.) GRAMMI is
an Ada user interface toolkit that supports the development of GUIs using the X
windowing system. The GRAMMI widget set is written in Ada and is based on, but
not completely compliant with, the Motif look and feel. The User Interface Editor
allows palette-style rapid prototyping. GRAMMI works with SunAda and HP/Alsys
Ada.

STARS Rapoty MoNi/Ad& Bindings (Free [public domain].) The STARS (PAL,
formerly SIMTEL-20) repository is a collection of public domain software that can be
downloaded from the Intemet. Among these is a set of bindings developed by Boeing
that consists of a library of Motif widgets callable from Ada programs. This is not
a GUI builder tool, but simply a library. Researchers at the Georgia Institute of
Technolo8V are investigating the pathnames to obtain these files and will download
them. These bindings should work with all or most Ada compilers.

Porable GUI Development Toolkdts

Several tools currently on the market are advertised as GUI development tools for
portable applications. This means that the designer can write code for any one API
and then link to libraries that govern the look and feel of the application on each

22 USACERL TR FF4/MM

different platform. This option looks very attractive at first, since theoretically they

could enable the development team to write and maintain just one version of the

source code for KWS, which would compile correctly for both Windows and Motif.

However, in practice the tools have shortcoming. The following paragraphs give the

results:

XVT Portability Toolkit (XVT Software) (List $1,450-$4,400.) The XVT toolkit is

advertised to support GUI development for Microsoft Windows, Macintosh, Motif,

Open Look, and character interfaces, among others. It includes a native toolkit and

a GUI builder (a WYSIWYG *paletteW tool).

Developers at the Georgia Institute of Technology who have used this tool to develop

an application that had both Microsoft Windows and Motif user interfaces strongly

recommended against using it. They said that the resulting interfaces were

nonstandard and did not conform to the *look and feel" of either Windows or Motif.
They also stated that even though XVTs advertisements claim that programmers

only need to use a single API, it was necessary to go into the generated code to

customize and fix problems, which slowed development. They are so frustrated that

they are considering taking a loss on their sizable investment in XVT and starting

over from scratch, developing two separate interfaces using Windows-specific and

Motif-specific toolsets (and having two copies of the source).

Aspect (Open Inc.). (List $3,995.) Supports Microsoft Windows, Macintosh, Motif,

and Open Look. Aspect includes a native toolkit and a GUI builder, similar to XVT.

Open Interface (Neuron Date). (List $7,000 [$15,000 for developers].) Supports

Motif, Open Look, Windows, Presentation Manager, Macintosh, and character

interfaces. Neuron Data uses its own proprietary toolkits to achieve the Windows

and Motif look and feel (rather than the native, standard toolkit such as XVT uses).

Neuron feels that this approach enables the company to produce a more flexible

product than it could if it stuck with the native toolkits. Because of the proprietary

implementations of the toolkits, it is likely that this tool diverges from the

standards.

Database Access

KWS currently relies on a centralized Oracle server. Since SQL is a standard 4GL,

KWS could be generalized for other database server programs. However, it is

assumed here that Oracle will remain as the server. The following tools are provided

for application programs to interface with Oracle servers.

USACERL Th FF44122

Pro-Ada

Pro-Ada provides an application programming interface to an Oracle server, callable
from Ada. Interfaces are provided by the SPARCWorks Ada and Alsys Ada

compilers.

Pro-C

The corresponding application programming interface to the Oracle server, callable
from C programs. Modules written in Pro-C can be linked with modules from other
C compilers.

24 USACERL TR FF44/U

4 Transition Study Results

This chapter describes the transition study, which examined platform, operating
system, user interface, language, and organizational decomposition issues.

Statistical Analysis

To gain insight into the nature of the KWS application, a statistical analysis of the
source code was done. This allowed an assessment of the relative importance of
these issues according to the amount of code devoted to each of the areas of study,
and a determination of the areas that would most affect the re-engineering effort.

The statistical information was gleaned through a combination of techniques:

1. Inspection and Analysis. The moso tedious and labor-intensive way to learn
how code functions is simply by reading code and comments. This method is
used to make subjective judgments, e.g., on code and comment quality.

2. Developer interviewing. The re-engineeringprocess is made considerably easier
if the original developers of the candidate system are available for interviewing.
KWS system developers were interviewed to get their estimates of complexity
and to help with difficult areas.

3. Automated tools. Automated tools can quickly and efficiently answer statistical
questions that could take hours if calculated by hand. The UNIX tools grep
(which searches text files for patterns), we (which counts words) and diff (which
compares files) were used extensively to examine the source code for
occurrences of system calls, interfaces to databases, and other statistics.

Statistical Anlysis AR uits

Table 4 shows the initial analysis of the code resulting from the automated tool
method. The number of lines of code (LOC) indicates KWS is a medium-sized
application. KWS depends on two interfaces: the Microsoft Windows Application
Programming Interface, which implements the GUI, and Oracle, the database
interface. These areas were examined to determine how much of the code is

USACEML TH FF44125 25

platform-specific and therefore will Table 4. S, ,atial ene of KWS source cods.
need to be rewritten. Table 4 comom T•
shows the initial analysis of the ToI of code (LOC) for KWS
code, done mostly with automated To lines o e code (LEC) 29.600
tools.

Total number of sorc film 97

The next stop was to examine the Number of executable modules 39

code to determine percentages that Number of header flim 44
might give us information on the Mic. files (dots, etc.) 14
level of difficulty for migration.
Table 5 shows the distribution
analysis of the code.

Conclusions From Statistcal Analysis

This analysis reveals that the overwhelming majority of the code is in the user
interface. Therefore, the largest part of the re-engineering effort will center on
rewriting the Microsoft Windows-based graphical user interface to conform to X and
Motif fumctionality. Due to the differences between Microsoft Windows and Motif,
this will probably entail some redesign as well as re-engineering.

The next most significant piece of the Knowledge Worker code is the database
(Oracle) access code. This code may be easier to re-engineer than the user interface
because the actual SQL calls will probably remain the same. Therefore, the re-
engineering task will probably entail mostly syntactic changes, but the basic
structure and flow will not change.

The system-dependent file I/O and process interface code will need to be re-
engineered because of the substantial differences between the Microsoft Windows
operating system and the UNIX/POSIX operating system. The rmaining
algorithmic code, just 2 percent of the whole, is the only code that could probably be
used unchanged after a re-engineering to open systems.

In summary, the large
nmjorty of KWS code is Table 5. DlOtrIbuflon analpfe of KWS source code.

platform-dependent and Code Module Amount
therefore will have to be User Interface code 85%

-engineered for the Aloithmic code Scheduing module 2%
open systems environ-ment. System interface code Database access 9%

Proes R io teae 3%
Procnes interface 1%

26 USACEMi TN WF4M=J

Hardware Platform Issues

The largest issue in platform dependence is the availability of tool support and the
differences between operating systems. A review of the Knowledge Worker code
showed no hardware dependencies not handled by the operating system. Therefore,
no platform-dependent problems that are not already addressed by the operating
system conversion are anticipated.

Because the Sun SPARC platform is the most common UNIX workstation, and
because the most comprehensive set of development tools exists for this platform, the
initial re-engineering to POSIX and Motif will be done on the SPARC. A later phase
of the prqject will include a true port to a totally different common architecture, the
386/486 PC-based UNIX.

Operating System Issues

This section details issues that arise in re-engineering from Microsoft Windows to
the UNIX/POSIX environment. Part of this study entailed an attempt to devise
mappings from Windows capabilities to POSIX features. According to the statistical
analysis of the code, approximately 5 percent of the code is OS-dependent. Other
than the services mapping described below, the only issues are differences in the file
systems. UNIX file names are case-sensitive, while Microsoft Windows filenames are
not. There are also syntactic differences in the filenames that must be taken into
account.

Operating System Services Abping

To assess the feasibility of supporting all of KWS's functionality in an open systems
technology, the number of Microsoft Windows operating system calls were examined
(Rector 1992) and an attempt was made to map these calls to the corresponding
POSIX system calls defined in IEEE 1003.1 (IEEE 1988). All of the OS-specific calls
could be mapped to POSIX calls, so all of KWS's functionality can be supported with
open systems. Following is the mapping of KWS Microsoft Windows operating
systems services to the POSIX calls that fulfill the same functions.

Ri A4nputo (open, fopen. The Windows Open and Fopen calls are supported
in POSIX as specified by IEEE 1003.1 in section 8, referencing the C Language
Standard. Therefore this functionality is present and can be translated.

Gflo Memory Alloation (GlobelAlloc). Dynamic memory allocation in Windows
is handled with the GlobalAboc system call. Memory blocks may be fixed or

USACERL TR FF4K=5 27

moveable. The POSIX.1 standard specifies that dynamic shared memory allocation
must conform to the C Language standard for the C library call naUloc. In Ada,
dynamic memory allocation is performed in the language itself instead of with a
direct system call, via the 'new" operator on an access variable. Global dynamic
memory allocation, therefore, will not be a problem with either C or Ada.

Task Crumwen (child windows). In a KWS application on Microsoft Windows, child
task creation is actually a function of the user interface. Here this will be handled
with the Motif XmCreate() calls. (There are 57 different calls, depending on the type
of child widget or gadget desired.) Therefore the "proof of concept! included an
experiment with mappings from Microsoft Windows child window types to Motif
widgets.

Note that the implementation of KWS does not use some of the features of Windows
that are not supported directly under POSIX, such as Dynamic Data Exchange
(DDE), Dynamic Link Libraries (DLL), and process communication (SendMessage).

Language Issues

The current implementation of KWS for Microsoft Windows is written in C.
However, it has been shown that only 2 percent of the code (the algorithmic
scheduling module) could potentially be ported directly. Since the great majority of
the code must be re-engineered anyway, the language issues then revolve mostly
around tool availability and support. This section contrasts the advantages and
disadvantages of the two candidate languages, C and Ada.

Standardization

The DOD standard 1815a defines the Ada language, which is now also an ANSI
standard. The Ada language may not be subsetted or supersetted if the compiler is
validated. There is also an ANSI standard for C. If ANSI C is adhered to, then C is
fairly portable. In addition, there is a standard UNIX tool, lint, that can evaluate
how closely source code conforms to ANSI C.

Compiler Availability

Ada compilers are now available for almost every hardware platform, though they
tend to be more expensive than C compilers. Some POSIX-compliant compilers are
available, and more are scheduled to come on the market soon. C compilers and
libraries are usually provided with UNIX distributions, and high-quality public

2 LUSACERL TR FP-WJ

domain C and C++ compilers (the GNU toolset) are available free of charge. C
programs can use the POSIX libraries of any POSIX-compliant UNIX implementa-
tion without modification, since the POSIX interface was originally specified for C.

Graphical User Interlac Tool Support (GUI builders)

There are GUI builders available for both C and Ada, with slightly more tools
available for C. Some of the tools produced C code, which then could be turned into
Ada through a translation step. Public domain Motif bindings are available for both
Ada and C.

Portability

Ada is designed to be portable and to support good software engineering practices
such as information hiding, encapsulation, modularity, and fault tolerance. If
compiler-dependent features are avoided, then code written in Ada is very portable.
C is also portable, and compilers for the language are ubiquitous. However, C has
many more possibilities for divergence than Ada. If C is chosen, the ANSI standard
C should be adhered to for maximum portability.

POSIX Compliance

The POSIX specification was originally defined for the C language, so those bindings
already exist. Recently, IEEE 1003.5, Ada language bindings to POSIX, were
approved. Market vendors have responded that several POSIX-compliant Ada
compilers will be available by summer 1993.

User Interface Issues

A recent major announcement from the six major UNIX vendors (Sun, Hewlett-
Packard, Univel, IBM, UNIX Systems Laboratories, and the Santa Cruz Operation)
detailed an effort for these vendors to cooperate on developing a Common Open
Software Environment (COSE, pronounced "cozyW) (Uniforum Press Release 1993).
This means that the desktop environment between all the vendors will be the
same-and that desktop applications will be common across all the platforms. This
does not mean that the underlying UNIX operating systems will be standardized, but
that the user interface to the desktop will be standardized. This announcement

Thrrough fie CmnW for Soft"m Reume Operao, 500 N. Wmhlngen St., FARB Church, VA 22046, . 7M6.
74d5.

USACERL TR MU4M/2 2

conifrms and strengthens the industry commitment to the concepts and standards
of open systems.

One major effect of this announcement is that Sun has decided to drop development
of its Open Look environment and toolkit. COSE will be based on SunSoft's ToolTalk
services and the Motif toolkit with some compatibility enhancements, and some
features borrowed from the technically superior Open Look. Existing applications
using XView and OLIT will still be supported.

The effect on the Knowledge Worker migration is that it will now be re-engineered
for Motif, by default. Since the statistical analysis showed that 85 percent of KWS
code is devoted to the user interface, this is a primary area of concern. For this
reason, the user interface was prototyped as a Proof of Concept (Chapter 5). Because
of the differences between Microsoft Windows and Motif, the user interface will need
to be Some small changes in the appearance of the user interface will
also be necessary. These are detailed in the next chapter.

0 Mc TR PP4M

5 Proof of Concept

A GUI rapid prototype was built to demonstrate the feasibility of using open systems

GUI tools to re-engineer KWS. Since 85 percent of the KWS source code is user
interface code, the user interface is the most important component to re-engineer to

assess the difficulty of the migratiou. The Appendix to this report contains graphical
representations of the screens generated for the prototype.

OverWe

The prototype of the KWS user interface is meant to show representative paradigms,

differences, and problems in re-engineering from Microsoft Windows to UNIX and
open systems. For expediency and availability, this prototype was built using the
Sun tools Dev/Guide and the Open Look toolkit. The interface was translated item
by iten.

Transformations and Assumptions

The fUndamental problem in translating one interface into another while preserving
its functionality is the different stylistic conventions. For example, Open Look (OL)

does not have menu bars as other toolkits do, and OL applications do not have "Quit
options, because this is handled by the window manager. The best that can be done
is to make the functionality and Olook and feel' as close as possible, while respecting
the conventions of both platforms.

The main concerns have been, first, the item's functionality, and, second, its

appearance. For example, a Windows menu title that drops down a menu when
clicked must be mapped to a OL button that shows a menu when pressed and has a

similar label, shape, color and position. The label and position of an item can be

ifrred easily from the manual's figures and from actual KWS use. The color (where
applicable) can also be inferred from use But the position and the way items are
grouped sometimes does not directly correspond because of different button sizes or

alignments.

USACEUL T1 W44/25 31

Abppbg fthe Inhw

Table 6 characteizes the mapping that was used for the prototype. The three steps
in translating each item are:

1. Determine the equivalent Open Look item to correspond to the Microsoft
Windows item.

2. Customize Open Look item for similar behavior (e.g., show menu or display

user list).

3. Customize Open Look item for similar look (e.g., label and position).

Table$. Wkxkdmwo-DevlQulds mippi•g.

Wkhdowe heN DevlGulde Iern

[al] menu bar [a21 rectangular control area

Jbi]menu bunton in (a) oQ button in (a)
"* set Type to "abbreviated menu"
"* set Menu to proper menu

[clI menu [c2] menu
"* set "not pinnable"
"* set Label to cl's label

[hl Imenu option [h2j menu item
- not selectable • set lnactlve"

[dl] sub-menu in (hl) [d2J menu
- set SubMenu in (h2) to menu

[all scroll area [e2] scrollng list
Sset ReadOnly as required

f1] Ine in scroll area (el) [f2] item in scrolling It (e2)
• set Item Label to Ins contents

[glJ menu when 01) pressed [g21 set "SubMenu" in (ei)

Other The Attachment window has been translated into a TextPane, which loads a file when opened; this
c s to the exact behavior of KWS.

6 Transition Plan

This chapter outlines the choices and alternatives available for devising a strategy
to convert the Knowledge Worker System using open sytems technology and to

perform a validation step to assess its portability.

PHtom Choice

As described in Chapter 4 (p 24), the Sun SPARC architecture is the recommended
choice for the first re-engineering effort. This platform was chosen because of its
ubiquity and because it supports the best set of development tools currently on the

market. Once the re-enginieerng effort is complete, then the open systems versin
of Knowledge Worker can be ported to other POSIX-compliant architectures. The
resulting system should be ported to another open systems platform, a S6/486
architecture running SCO UNIX. This will provide a validation step to ensure the
portability of the application and to test the quality of the open systems interfaces.

Stagic Alternatves

A/lltwive/ 1-Nonsp•cifi Gr~khca/ Intefawa Tool

At first glance, the nonspecific graphical interface tool builders seem very attractive.

In theory, the Knowledge Worker System could be r to the proprietary
language of the tool, so that code could be automatically produced for each of the
different user interfac techologe This would allow one version of the source code
to be maintained that would produce code for Microsoft Windows, Motif, Open Look,

and •n Mcinto However, aft studying thes tools further, and after hearing
from large development projects that have used them, there proved to be serious

flaws:

Its developer becomes locked into a proprietaryi language. This
is dangerous for several reasons--the vendors have total control over the

spresentation of the language and could change it at their d retion, causing
mior difficultie Also, uWsg a propietary language violates the spirit of open

-.y .

USACIEL TN FF-44453

"* The tools are not robust or precise enough to completely specify the interfaces,
requiring changes in the generated code to achieve the desired effects. This
means the different platforms wind up with different versions of the source
code, which is exactly what this technology is supposed to prevent.

"* The SQL interface might differ on different hardware platforms, meaning once
again that different platforms would have to have different source code.

In general, the interfaces generated by these tools are inferior to hand-built
interfaces. The builders are, unfortunately, not specialists in any single
operating system. The interface technologies supported by these tools vary
widely enough so that no one tool currently supports all of the systems well.

These tools are so primitive that they do not currently fulfill their promise.
Therefore, their use is not currently recommended, although the technology will
likely improve.

Alternmtive 2--Mow-Specfc GUI Tool

The second alternative ib to maintain two separate sources--the existing one for

Microsoft Wimdows and the newly re-engineered open systems source using a Motif-
Specific GUI builder tool. The palette-based tools now available are quite adequate
and can significantly enhance the development process. Since tools already exist

that can support Motif, POSIX compliance, and Ada, this is the recommended
strategy for re-engineering the user interface.

Language l"Wie

Part of determining the feasibility of re-engineering KWS to open systems technology
was to evaluate the tool support for Ada. There is already adequate tool support for
Ada development. Since Ada is the standard DOD language, it is the recommended
language, bearing in mind that:

Tools are currently available, although the tool choices are rather limited and
the tools are relatively expensive.

Ada technology for open systems is still nascent, and some of the re-engineering
work may need experimentation to solve emerging problems.

Since the original KWS is written in C, the Ada implementation will totally
diverge from the original; there will be no code sharing. In all future versions

34 USACEL TN Fr-P4_

of KWS, it will be necessary to modify both the original and the re-engineered
Ada versions of the software.

The expertise pool for developing and maintaining Ada applications is more
limited than the expertise pool available for C.

The C language was considered as an alternative, and although Ada is the recom-
mended choice because of the DOD standard, a re-engineering in C would also be a
feasible, simpler task. C would offer some advantages:

"* Some of the code (less than 5 percent) would not have to be re-engineered and
could be used directly.

" Using C would reduce the amount of experimentation necessary, and therefore
it would improve the accuracy of cost and schedule estimations.

"* C tools are widely available and comparatively cheap or even free.

"* The interfaces for open systems (notably POSIX and Motif) are defined in C,
and thLrefore are the best-tested, the most reliable, and the most widely
available.

While the considerations listed above are advantages, they are not strong enough
advantages to advocate a waiver for C.

Strategy Recommendaton

This chapter details the recommended strategy for re-engineering the Knowledge
Worker System to open systems technology and Ada. Included are an overview of
the development strategy and an associated manpower estimate, a development
schedule, and a cost estimate for personnel services, equipment, and tools.

Developnent Strfty

The re-engineering effort should be performed in two phases. First there should be
a re-engineering phase, choosing a development platform that has the best tool
support for redesigning and reimplementing the KWS application. According to the
vendor and tool survey done in this study, the Sun SPARC platform has the best
development environment available for open systems tools.

USACERL TR FF4MM25 35

The second phase of effort is a true port, moving KWS to another open systems

platform to verify portability of the open systems design and code. Since the 386/486
PC is a ubiquitous platform, and since SCO UNIX is POSIX-compliant and is
available for the 386/486 PC platform, it is recommended for the first migration.
Subsequent migration platforms can be included as needed.

Schedule

Figures 1 and 2 show modified Gantt charts giving projected completion schedules
for Phases I and II of KWS migration.

Month-I Month-2 Month-3 Month-4 Month-5 Month-6 Month-7

[Acquir E~quipment / Tools

FRedesin User Interface Implement User Interface

Mirrate Database Code Migrate Algorithmic Code I O°S Code Migration

Month-8 Month-9 Month-10 Month-I I Month- i2

JSystem Integration I

System Test

FDcume-ntation

Figue 1. Proleced completion schedules for Phases of KWS migration.

Month- I Month-2 Month-3 Month-4 Month-5 Month-6

IEquipment I Tools

Migrate to SCO Unix on 486

ISystem Test

Figure 2. Projece competion echedule for Phase II of KWS migratmion.

36 USAC~ft TR FF44/U

7 Conclusions and Recommendations

This study concludes that it is feasible to convert the Knowledge Worker System to
open system technology. An analysis of KWS showed that the program's source code
is 85 percent user interface code, indicating that conversion of the user interface
would make up the bulk of the conversion effort. A prototype graphical user
interface (GUI) was built using open systems GUI tools to demonstrate the feasibility
of accomplishing this major task. Such tools already exist to support POSIX, Motif,
and Ada.

Since Ada is already the DOD standard, and because tools are currently available,
Ada is the recmmended choice for converting KWS to open systems technology. The
re-engineering effort should take place in two phases:

1. A development platform should be chosen that has the best tool support for
redesigning and reimplementing the KWS application. The vendor and tool
survey done for this study indicated that the Sun SPARC station is best suited
for this application, and is the recommended platform. The redesign and
reimplementation of KWS should take place on this platform.

2. The Knowledge Worker System should be ported to a second open systems
platform. Since the 386/486 PC is a ubiquitous platform, it is the recommended
path for the first migration. Later platform migrations can be included as
needed.

USAC"R. Th FF4M=I 2?

References

POSff 1003.1 Specfation (ANSI Standard) (Institute o Electrical and Electronics Engineers Inc,
1988).

IEEE 1003 Committee, Techical Standards Reference Model, International Standard 1003.3 (1988).

Human Compnter Interface Style Guide, ADA 253475 38.92.

KnowLedp Wodrr System Version L6 Unr Manual, Draft Automated Data Processing (ADP) Report

(U.S. Army Construction Engineering Research Laboratories [USACERLI April 1993).

NWT, Apphoat.;n Plortablty Pufi The U.S. Government'a Open System Environment Profile OSE / 1,
Version 1.0 (April 1991).

Quarterman. John, and Susanne Wilhelm, UNh POSIX and Open Systems, Addison Wesley UNIX
and Open Systems series (1993).

Rector, Brent E, Developing Wbdom 3. Application, with Microsoft C/C++, 2d ed. (Sams Publishing,

1992).

DOD Architecture Imp/ementation Concept for Information Systm.:- Tecnid Re .rence Manual,

Version 1.8 (January 1993).

Uniforum Press Release, UNN Leader Announce Common Open Sowanre Enuironment-Six

CompaniesAgree on Softllware 2anokgks and Common Dsshtop, Reinforce Commitment to Open

Syste.v (San Francisco Uniforum Confrence, 17 March 1998).

3 USACERL TR FF41M

Appendix: Prototype Screens

This section contains some of the representatie re-engineered open systems screens
from the prototype. This shows the different look and feel in the open systems GUL
The prototype was developed using Sun's Dev/Guide palette-based GUI builder tool
on a SPARC platform.

al Knowledge Worker System: MELODY

(ZED (EDl (E D EE CiEE) alDjw ~

Figure Al. Maihn saren.

Event Mahager

GED.ERD(ED (a) CE
Events Tasks For. KWS Demo

Date Due Title ID Date Due Title ID

22JunS3 fly D.C. fly 23Jun93 give presentation present
23Jun93 demo KWS demo

FigW AL. Event m ager saren.

USAMM TN PP414/2 w

ToDo: MELODY 23Jun93

Date Due Title ID Assigned To Performed fy Daratlo

P 12Nov91 (late) Order Forms from Supply

SP 15Apt93 (late prority task) XX __MELODY ___ELODY

S 24Jun93 A task on time OK

7 23 Ju- 93 A priority task

igure A2. ToDo It scram .

SjWork Groups containing MELODY

I D Title eOrg ID

SCoC College of Computing

FWeu A4. Ad•miltme semen.

40 USACERL TN FF44/M

IKNOLEDGE WORKER HELP XNDEX

There are two kinds of Windows in the Mnowledge Worker System, The
ToDo: Window which access those windows associated with a single

anowledge Worker, and the rvent Manager Windows which acces" all of the
windows in the systae.

ToDo Windowm

The ToDo windows are a group of windows that contain all of the
information assigned to you. They contain a list of tasks arranged
according to a specific time period (i.e., by day, week, mth or year).
There is also ToDo: Complete window that contains a list of all tasks
assigned to you. From the tank windows, you can access a list of
subtauks associated with a selected task. From the subtank window you
can access a list of steps associated with a selected subtank. The
types of windows accessible from the ToDo Windows are:

Task Window - This window contains a list of tanks associated
with a specific knowledge worker.

Subtans) Window - This window contains a list of associated
subtasks.

FHgWu AS. MNn help sraen.

USACERI DISTRIBUTION

CNSI of Enownes HO USEUCOM 091211 US "n Emna HyIene Agency
ATMN: CEHEC-IM-U4 (2) ATMN ECJ4-UE ATTN: HSIS-ME 21010
ATTN: CEHEC-ID-LP (2)
ATTN: CEN CEWES 31910 us Gaovt Pwihig 011100 20401
ATTN: CECO ATTN: Lbrauy ATTN: Re SeolDepoe* See (2)
ATTN: CERO.M
ATYN: CECC-P CECRIL 03755 Nell kuaif of Slammimmi & Tech
ATTN: CERO-L ATYN: Lbruy ATTN: Ibary 20869
ATTN: CECW-P
ATTN: CECW-PR USAAMACOM DOW". Tech hInt CerWe 22304
ATTN4: CEUP-E AiiM: Focds. Engr 21719 ATTN: DTIC-FAB (2)
ATTN: CBJP-C ATTN: AMSUC-EH 61299
ATTN: CECW-O ATTN: PEic.lle Eingr (3) 65613 172
ATTN: CECW 6144
ATTN: CERM Poot Lsonud Wood 65473
ATTN: CEMP ATTN: ATSE-OAC-LS (3)
ATTN: CERD-C
ATTN: CBMP-M Miliaiy Dis of WASH
ATTN: CB4P-R Fort MeNsir
AflN: CERO-ZA ATTN: AMEN 20319
ATTN: DAEN-ZC

USA Engr Activity, CqMla Area
CECPW ATTN: Ubrery 22211
ATrN: CECPW-P 2206
ATTN: CECPW-TT 2206 UIS Arm" ARDEC 0760
ATTN: CECPW-ZC 22060 ATTN: SMCARBIE
ATTN: DET 111 79906

Engr Societies Ubruy
US Army Engr D~istic ATTN: Acquisitons 10017
ATTN: Lbrauy (40)

Debser"Ncle p
US Army Engr Divuion ATTM: NADS 20305
AIIM: Lb'eay (13)

Dellenee Logistics Agenc
HO XVIII A~emrn Corps 29307 ATrN: CIA-WI 22304
ATTN: AFZA-DPWi-EE

Wowr Reed Army Mica Mr 2037
US Army Mateuial Commeind (AMC)

Nucueindea. VA 22333-000 Nubnd- Guard Bureau 20310
ATTN: AMCEN-P ATTN: NGS-A0
Hwry Diminn Lab

ATTN: Ubery 2076 US ME"y Academy 10996
Whie S..de Mimled Reng 6600 ATMIN MAEN-A

ATMN: Lbruy ATTN: Pclklese Erqngwe
ATTN: Geogrohy & Enwr Engrg

FORSCOM
Porte Gllm & McPherson 30330 Naval Pacilitiee Engr ComwmW 93043

ATrN: POEN ATTN: Nave Cldi Engr Servlce Center (3)
hwtdemilmn: (23)

USA Jqen (USARM
TRADOC ATTN: APAI-EN-ES 96U34

Port Monme 3651I ATTN: HONSHU 96343
ATTN: AT6DOG ATTN: DIWIOkinamm 96376

hitaeions: (20)
416t Engkiner Commndw 602

Port Bolwoir 2206 ATTN: Obeon USAR Ohr
ATTN: CECC-R 2206
ATTN: Engr SIrieglp Studlee Ctr US Army HSC

Pout Seen Houston 76224
UISA Me"c R&E Cente 0176 ATTN: HaLO-P

ATTN: STRNdC-DT Pirnalmons Army Maici Otr
ATTN: DRCNA-F AiiM: HSHGDPW 60045

US Army llmiarhis Tech Lab Tyndi AFB 32403
ATTN: SLCMT-OPW 02172 ATTN: Engrg&a Sew Lab

SHAPE 0070 Amedoean Pubiob W AesAsoc. 64104-1006
ATT N: Inkestruchare Drench LANDA

This psoubiatin wsreproducd on. reldPOW.* U.S. GOVERNMENT PAwnTNG OFFICE 10S4-351O-SO0037

